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Motivation
A single NLO transport coefficient known:

Heavy quark momentum diffusion coefficient: Caron-Huot, Moore 0801.2173
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Truncated leading order (eq. (2.5) with C=0)

Shows very poor perturbative convergence
Is this a generic feature of dynamical quantities?

Compare: pressure vs. quark number susceptibilities
(no pure gluon diagrams in χ)
If is, is there anything that can be done? Resummations?



Motivation

To answer these questions, compute the next easiest NLO quantity:

Thermal photon production rate

Phenomenologically interesting, improvement needed badly
If doesn’t improve, at least get reliable errorbars

However: The calculation has not been done yet

Here: What technologies do we need for the calculation

Warning: Work under construction
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LO calculation

We are interested in
dΓγ

d3k
=

e2

(2π)32k0
D>(K )

with electro-magnetic current-current Wightman correlator

D>(K ) =

∫

d4x e−iK ·x〈 jµ(0)
︸︷︷︸

P

q=uds eq q̄γµq

jµ(x)〉

Dynamical quantity (k0 6= 0):

Euclidean methods + analytic continuation

Real-time formalism



LO diagrams:

1 loop O(αEM):

K

Kinematically disallowed for light-like K

(both quarks can’t be on-shell simultaneously)

2 loops O(αEMαs):

K K



LO diagrams
Cut diagrams correspond to:

Compton scattering:

t ∝

∫

dq2
⊥

dσ

dq2
⊥

Pair annihilation:

t ∝

∫

dq2
⊥

dσ

dq2
⊥

Every time a scattering takes place, a quark can convert to a photon
⇒ For (K 2 = 0) t −→ 0, IR divergence:

D> ∝

∫

Λ2
IR

dq2
⊥

dσ

dq2
⊥

∝ ln

(
k0T

Λ2
IR

)



LO diagrams
Cut diagrams correspond to:

Compton scattering:
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⊥
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Pair annihilation:
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⊥
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⊥

Every time a scattering takes place, a quark can convert to a photon
⇒ For (K 2 = 0) t −→ 0, IR divergence:

D> ∝
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dq2
⊥
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dq2
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∝ ln
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k0T

Λ2
IR

)

IR divergences signal of missing physics!
For soft particles p ∼ gT , large modifications to dispersion relation due
to medium.



Hard Thermal Loops Braaten, Pisarski; Frenkel, Taylor; Blaizot-Iancu

Interaction with the medium generates a O(gT ) correction to disp.
relation

Dominated by scattering with ”Hard” particles at the scale T

Πgluon(p ∼ gT ) =

+ +

∼ g2T 2

Σquark(p ∼ gT ) = ∼ gT

Correction not small for ”soft” O(gT ) modes: need to resum
⇒ HTL resummed perturbation theory

= + + . . .
p~g T

Expansion around quasi-particle excitations



In-medium dispersion relations

For momenta ∼ gT , qualitatively different disp. rel.:
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Transverse and Longitudinal
polarizations: ωT , ωL

Minimum frequency: Plasma
frequency: ωpl

Screening mass: mD

Non-zero spectral weight in
spacelike region: Landau cut

Similarly for quarks:

Effective thermal masses (m∞), plasma frequencies and Landau cut
Positive and negative helicity/chirality modes: Plasminos



Leading order: Soft region Kapusta, Lichard, Seibert

Landau cut opens up phase space:

K

Soft spacelike quark

∝ ln

(
ΛUV

m∞

)

+#

Hard computation mangles the soft ∼ gT scale: IR divergence
Soft computation mangles the hard ∼ T scale: UV divergence
⇒ Dependence on cut off cancels in the sum

ln

(
Λ2

UV

m2
∞

)

+ #

︸ ︷︷ ︸

Soft: HTL

+ ln

(
k0T

Λ2
IR

)

︸ ︷︷ ︸

Hard: Bare

= ln

(
k0T

m2
∞

)

+ #

TgT

HTL Bare

UV/IR



Collinear region

Introducing HTL gave rise to a completely new kinematic region: Aurenche et. al

K
P

K+P

Gluons spacelike

P and K + P nearly collinear

Gluons spacelike, in Landau cut

Cutting graph gives bremsstrahlung and pair annihilation processes

Guy Moore’s talk!



Collinear region: AMY resummation Arnold, Moore, Yaffe

Splitting described by an integral equation:

= +

2p⊥ = iδE f(p⊥; p, k) +

∫
d2q⊥

(2π)2
C(q⊥)

[

f(p⊥) − f(p⊥ + q⊥)
]

dNγ

d3kd4x
=

2αEM

4π2k

∫
∞

−∞

dp

2π

∫
d2p⊥

(2π)2
nf (k + p)[1 − nf (p)]

2[p(p + k)]2

×
[
p2 + (p + k)2

]
Re

{

2p⊥ · f(p⊥; p, k)
}



Collinear region: AMY resummation Arnold, Moore, Yaffe

Splitting described by an integral equation:

= +

2p⊥ = iδE f(p⊥; p, k) +

∫
d2q⊥

(2π)2
C(q⊥)

[

f(p⊥) − f(p⊥ + q⊥)
]

Takes two inputs:

1 Dispersion relations of splitter and splittee

δE ≈ k0 − E (k − p) − E (p) = −

[
k

p(k + p)

p2
⊥

+ m2
∞

2

]

2 Rate of soft collisions: Collision kernel

C(q⊥) =
dΓ

dq2
⊥

∼ g2T
m2

D

q2
⊥
(q2

⊥
+ m2

D)
∝

⇒
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Why is NLO O(g):

O(1) sensitivity to soft sector arose from IR divergent integrand:

q
∼

∫

gTdqf (q), with f (q . gT ) ∼ 1/q
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Whenever a line gets soft, expect O(g) corrections



Why is NLO O(g):

O(1) sensitivity to soft sector arose from IR divergent integrand:

q
∼

∫

gTdqf (q), with f (q . gT ) ∼ 1/q

When a generic loop momentum becomes soft, the integrand stays
finite

p ∼

∫

gT

dpf (p), f (p) ∼ p0

⇒ O(g) sensitivity to gT to soft sector

Whenever a line gets soft, expect O(g) corrections

Luckily NLO integrals not sensitive to ultra-soft scale ∼ g2T .

NNLO probably prohibitively hard. Same story as g 6 pressure, but no
technology to resum ultra-soft sector.



Collinear region

2p⊥ = iδE f(p⊥; p, k) +

∫
d2q⊥

(2π)2
C(q⊥)

[

f(p⊥) − f(p⊥ + q⊥)
]

Order g corrections to collinear resummation from two sources:

1 Dispersion relations of splitter and splittee

2 Rate of soft collisions: NLO correction to collision kernel



Collinear region: 1. Dispersion relations

δE ≈ −

[
k

p(k + p)

p2
⊥

+ m2
∞

2

]

Order O(g) corrections to m2
∞ ∼ g2T 2

[
1 + #g + . . .

]

m2
∞ ∼ g2

∫
d3p

p
nB(ωHTL(p)) ∼ g2

∫
d3p

p
nB

(√

m2
∞ + p2

)

∼ g2T 2(1 − #m∞/T )

Note: actually m2
∞ becomes negative for not so small g ⇒ maybe better to solve

m∞ self-consistently



Collinear region: 2. Collision kernel

Rate of soft collisions: NLO correction to collision kernel

C(q⊥ ∼ gT ) ∼ CLO + gCNLO

⇒
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(d)(c)(b)(a) (e) (f) (g)

All propagators soft!! Looks almost prohibitively difficult!



Collinear region: NLO collision kernel Caron-Huot
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(d)(c)(b)(a) (e) (f) (g)

However:

Can be translated into EQCD (along the light cone) with a very
clever coordinate transformation.

EQCD is vastly simpler than HTL: just massive disp. rels.

CNLO = (g 4T 2CsCA)
[ 7

32q3
⊥

−
mD + 2

q2
⊥
−M2

q⊥
arctan q⊥/mD

4π(q2
⊥

+ m2
D)2

+
mD −

q2
⊥

+4m2
D

2q⊥
arctan(q⊥/2mD)

8πq4
⊥

−
arctan(q⊥/mD)

2πq⊥(q2
⊥

+ m2
D)

+
arctan(q⊥/2mD)

2πq3
⊥

+
mD

4π(q2
⊥

+ m2
D

(
3

q2
⊥

+ 4m2
D

−
2

q2
⊥

+ m2
D

−
1

q2
⊥

) ]



Collinear region, Results

dΓγ

d3k
⊃

A(k)

(2π)3
[Cbrem(k) + Cpair(k)]

∼ 100% corrections for realistic couplings

Just one kinematic region, don’t draw any conclusions!
VERY PRELIMINARY



”2 → 2” NLO diagrams

Whenever any of the lines becomes soft, dispersion relation are O(g)
mangled:

Less scary diagrams
K K K

blobs suppressed from propagators



”2 → 2” NLO diagrams

Whenever any of the lines becomes soft, dispersion relation are O(g)
mangled:

Less scary diagrams
K K K

blobs suppressed from propagators

In addition, whenever vertex contains only soft momenta, it receives O(1)
HTL correction:

Frightening diagrams
K K K



HTL’s and real time

Compact notation may fool: Zoom in to the HTL vertex

+=

Internal lines can be on-shell and can hence be cut:

+=

⇒ Need to understand HTL vertices in real time formalism



HTL’s simplified by effective kinetic theory Wong; Blaizot,Iancu; Caron-Huot

Consider plasma of

Soft quark and gluons with p ∼ gT

Hard (eikonal) particles: v = 1, kinematics unaffected by softs

Example: Retarded self energy

=

A soft quark couples to a heavy mode with: ω2
0 i/v

Hard particle propagates along light ray with velocity v:
Deik

R (x, t) ∼ δ3(vt − x)

Deik
R (k, k0) =

−i

−(k0 + iǫ) + v · k

Integrate over hard particle distribution (over directions):
∫

dΩv

4π

−iΣHTL = ω2
0

∫
dΩv

4π

/v

−(k0 + iǫ) + v · k



HTL vertices

The effective kinetic theory can be used to get all the other vertices
Example: 3-point retarded:

= ω2
0

∫
dΩv

4π
i/v

−i

v · Q−
(igvµta)

−i

v · (Q + P)−

Angular integrals trivial, always lead to familiar HTL arctan’s



Conclusions?

Work is in process

Collinear sector finished

Easy diagrams under control

fermionic HTLs understood

Evaluation of the fully soft diagrams underway

Can we guess already now the answer?

In the collinear region ∼ 100% correction

Fully soft sector complicated, different color structures. Sign?
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Work is in process

Collinear sector finished

Easy diagrams under control

fermionic HTLs understood

Evaluation of the fully soft diagrams underway

Can we guess already now the answer?

In the collinear region ∼ 100% correction

Fully soft sector complicated, different color structures. Sign?

Winter is coming to Montreal, so it’s good that we
don’t run out of things to do.


